Structure and magnetic properties of sputtered thin films of Fe0M79Ge0.21
نویسندگان
چکیده
Films of Fee.79Geez1 with thicknesses of 300 nm were synthesized by ion beam sputtering, and were annealed at temperatures from 200 to 550 “C. The materials were characterized by x-ray diffractometry, Mdssbauer spectrometry, vibrating sample magnetometry, ferromagnetic resonance spectrometry, and electrical resistivity measurements. The as-prepared materials comprised chemically disordered bee crystallites of sizes less than 20 nm, and were found to have a distribution of internal strains. Upon annealing at temperatures of 250 “C! and below, there occurred strain relaxation, some evolution of short range chemical order, and an improvement in soft magnetic properties. The coercive field was a minimum for the sample annealed at 250 “C!. Crystallite growth occurred at higher annealing temperatures, accompanied by a transition in several measured parameters from those of ultrafine grained materials to those typical of polycrystalline materials. This trend can be explained with the random anisotropy model. Miissbauer and magnetization measurements indicated that the Ge atoms behave as magnetic holes. The 57Fe hyperflne magnetic field distribution, and its change duritrg chemical ordering, can be calculated approximately with a model of magnetic response. The large local isomer shifts at 57Fe atoms near Ge atoms suggest that a local depletion of 4s conduction electron density should be incorporated into the model.
منابع مشابه
Effect of Magnetic Field on Surface Morphology and Magnetic Properties of FeCu/Cu Nano layers Prepared by Electrodeposition Technique: Investigation of Magneto-hydrodynamic Effect
In this paper, the effect of magnetic field on the morphology, structure and magnetic properties of electrodeposited FeCu/Cu thin films was investigated. The films were deposited on Au2PdAg/glass substrates using electrodeposition technique in potentiostatic control. The magnetic fields of 5000 and 7000 Oe were applied on deposition bath during deposition. Two series of thin films were prepared...
متن کاملEffect of Cobalt Concentration on Structural and Magnetic Properties of Co-Fe Thin Films
Co-Fe films were electrodeposited on Cu substrate from electrolytes with different Co concentration levels. X-ray diffraction (XRD) was used to investigate the films crystal structures. The results indicate that if the Co concentration is less that the Fe concentration, the cubic structure appears in the films, while the hexagonal structure dominates when the C...
متن کاملInfluence of aging temperature on phase transformation and mechanical behavior of NiTi thin films deposited by magnetron sputtering technique
In this study, NiTi thin films were deposited on the glass and NaCl substrates by means of magnetron sputtering method. The influence of aging temperature, over the range 300-500 oC, on phase transformation and mechanical properties of the sputtered NiTi thin films were studied by differential scanning calorimetry (DSC) and nano-indentation assay, respectively. The DSC curves showed that the ag...
متن کاملCorrelation between crystal structure and optical properties of copper- doped ZnO thin films
ZnO and Cu doped[1] (CZO) thin films were prepared by radio frequency sputtering. The structural and optical properties of thin films were investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), optical spectrophotometer, and photoluminescence (PL) techniques. ZnO thin films showed crystalline and micro-stress defects in the crystal lattice. Annealing of CZO thin films increa...
متن کاملThermal Oxidation Times Effect on Structural and Morphological Properties of Molybdenum Oxide Thin Films Grown on Quartz Substrates
Molybdenum oxide (α-MoO)thin films were prepared on quartz and silicon substrates by thermal oxidation of Mo thin films deposited using DC magnetron sputtering method. The influence of thermal oxidation times ranging from 60-240 min on the structural and morphological properties of the preparedfilms was investigated using X-ray diffraction, Atomic force microscopy and Fourier transform infrared...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999